blockade in carbon nanotubes, Physica E (Amsterdam) 40,
92 (2007).
[3] T. Kamimura, Y. Ohno, and K. Matsumoto, Transition
between particle nature and wave nature in single-walled
carbon nanotube device, Jpn. J. Appl. Phys. 48, 015005
(2009).
[4] N. Y. Kim, P. Recher, W. D. Oliver, Y. Yamamoto, J. Kong,
and H. Dai, Tomonaga-Luttinger Liquid Features in
Ballistic Single-Walled Carbon Nanotubes: Conductance
and Shot Noise, Phys. Rev. Lett. 99, 036802 (2007).
[5] H. T. Man, I. J. W. Wever, and A. F. Morpurgo, Spin-
dependent quantum interference in single-wall carbon nano-
tubes with ferromagnetic contacts, Phys. Rev. B 73 , 241401
(2006).
[6] L. G. Herrmann, T. Delattre, P. Morfin, J.-M. Berroir, B.
Plaçais, D. C. Glattli, and T. Kontos, Shot Noise in Fabry-
Perot Interferometers Based on Carbon Nanotubes, Phys.
Rev. Lett. 99, 156804 (2007).
[7] J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, H. Dai, R. B.
Laughlin, L. Liu, C. S. Jayanthi, and S. Y. Wu, Quantum
Interference and Ballistic Transmission in Nanotube Ele c-
tron Waveguides, Phys. Rev. Lett. 87, 106801 (2001).
[8] F. Romeo, R. Citro, and A. Di Bartolomeo, Effect of
impurities on Fabry-Pérot physics of ballistic carbon nano-
tubes, Phys. Rev. B 84, 153408 (2011).
[9] J. Jiang, J. Dong, and D. Y. Xing, Quantum Interference in
Carbon-Nanotube Electron Resonators, Phys. Rev. Lett. 91,
056802 (2003).
[10] L. Yang, J. Chen, H. Yang, and J. Dong, Quantum
interference in nanotube electron waveguides, Eur. Phys.
J. B 43, 399 (2005).
[11] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.117.166804, which in-
cludes Refs. [1,9,12–23], for additional details on the device
fabrication, on the Fourier analysis of the interference
pattern, on the transfer matrix and tight binding calculations
(including the cases of spin-orbit interaction or broken
rotational symmetry), and on the error bounds for the chiral
angle.
[12] A. K. Hüttel, G. A. Steele, B. Witkamp, M. Poot, L. P.
Kouwenhoven, and H. S. J. van der Zant, Carbon nanotubes
as ultrahigh quality factor mechanical resonators, Nano Lett.
9, 2547 (2009).
[13] M. del Valle, M. Margańska, and M. Grifoni, Signatures of
spin-orbit interaction in transport properties of finite carbon
nanotubes in a parallel magnetic field, Phys. Rev. B 84,
165427 (2011).
[14] S. Datta, Electronic Transport in Mesoscopic Systems
(Cambridge University Press, Cambridge, England,
1997), p. 377.
[15] R. Saito, M. Dresselhaus, and G. Dresselhaus, Physical
Properties Of Carbon Nanotubes (World Scientific,
Singapore, 1998).
[16] D. Hofstetter and R. L. Thornton, Theory of loss measure-
ments of Fabry-Perot resonators by Fourier analysis of the
transmission spectra, Opt. Lett. 22, 1831 (1997).
[17] M. Born, Principles of Optics: Electromagnetic Theory
of Propagation, Interference, and Diffraction of Light
(Pergamon, Oxford, 1964).
[18] D. Tománek and S. G. Louie, First-principles calculation
of highly asymmetric structure in scanning-tunneling-
microscopy image s of graphite, Phys. Rev. B 37, 8327
(1988).
[19] S. Krompiewski, J. Martinek, and J. Barnaś , Interference
effects in electronic transport through metallic single-wall
carbon nanotubes, Phys. Rev. B 66, 073412 (2002).
[20] C. J. Lambert and D. Weaire, Decimation and Anderson
localization, Phys. Status Solidi (b) 101, 591 (1980).
[21] M. Ouyang, J. L. Huang, C. L. Cheung, and C. M. Lieber,
Energy gaps in “metallic” single-walled carbon nanotubes,
Science 292, 702 (2001).
[22] J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley,
and C. Dekker, Electronic structure of atomically resolved
carbon nanotubes, Nature (London) 391, 59 (1998) .
[23] J. R. Taylor, An Introduction to Error Analysis: The
Study of Uncertainties in Physical Measurements, 2nd ed.
(University Science Books, Herndon, 1997).
[24] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund,
Science of Fullerenes and Carbon Nanotubes: Their Prop-
erties and Applications (Academic, New York, 1996),
p. 965.
[25] The inclusion of spin-orbit interaction and curvature effects
does not affect our conclusions and is omitted here for
clarity. Full calculations are shown in Fig. S4 of the
Supplemental Material [11].
[26] A. M. Lunde, K. Flensberg, and A.-P. Jauho, Intershell
resistance in multiwall carbon nanotubes: A Coulomb drag
study, Phys. Rev. B 71, 125408 (2005).
[27] M. Marganska, P. Chudzinski, and M. Grifoni, The two
classes of low-energy spectra in finite carbon nanotubes,
Phys. Rev. B 92, 075433 (2015).
[28] E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-
Rasmussen, J. Nygård, K. Flensberg, and L. P.
Kouwenhoven, Quantum transport in carbon nanotubes,
Rev. Mod. Phys. 87, 703 (2015).
[29] D. R. Schmid, S. Smirnov, M. Margańska, A. Dirnaichner,
P. L. Stiller, M. Grifoni, A. K. Hüttel, and C. Strunk, Broken
SU(4) symmetry in a Kondo-correlated carbon nanotube,
Phys. Rev. B 91, 155435 (2015).
[30] The origin of the 60 5 meV band gap in our CNT cannot
be explained from the CNT curvature. A curvature induced
gap of < 20 meV is estimated for a CNT with θ > 22°. Note
that for our analysis, the nature of the small band gap is not
crucial. We focus on energies ε larger than 90 meV where
the effect of the finite band gap on the dispersion is
negligible.
[31] F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen,
Coupling of spin and orbital motion of electrons in carbon
nanotubes, Nature (London) 452, 448 (2008).
[32] G. A. Steele, F. Pei, E. A. Laird, J. M. Jol, H. B. Meerwaldt,
and L. P. Kouwenhoven, Large spin-orbit coupling in carbon
nanotubes, Nat. Commun. 4, 1573 (2013).
PRL 117, 166804 (2016)
PHYSICAL REVIEW LETTERS
week ending
14 OCTOBER 2016
166804-5