5
charge transport in carbon nanotube mechanical res-
onators,” Science 28, 1107 (2009).
[9] A. K. H¨uttel, H. B. Meerwaldt, G. A. Steele, M. Poot,
B. Witkamp, L. P. Kouwenhoven, and H. S. J. van der
Zant, “Single electron tunneling through high-Q single-
wall carbon nanotube NEMS resonators,” phys. stat. sol.
(b) 247, 2974 (2010).
[10] K. J. G. G¨otz, D. R. Schmid, F. J. Schupp, P. L. Stiller,
Ch. Strunk, and A. K. H¨uttel, “Nanomechanical char-
acterization of the Kondo charge dynamics in a carbon
nanotube,” (2018), arXiv:1802.00522.
[11] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and
H. Dai, “Synthesis of individual single-walled carbon
nanotubes on patterned silicon wafers,” Nature 395, 878
(1998).
[12] V. Singh, B. H. Schneider, S. J. Bosman, E. P. J. Merkx,
and G. A. Steele, “Molybdenum-rhenium alloy based
high-Q superconducting mircowave resonators,” Applied
Physics Letters 105, 222601 (2014).
[13] D. R. Schmid, S. Smirnov, M. Marga´nska, A. Dirnaich-
ner, P. L. Stiller, M. Grifoni, A. K. H¨uttel, and
C. Strunk, “Broken SU(4) symmetry in a Kondo-
correlated carbon nanotube,” Physical Review B 91,
155435 (2015).
[14] K. J. G. G¨otz, S. Blien, P. L. Stiller, O. Vavra, T. Mayer,
T. Huber, T. N. G. Meier, M. Kronseder, Ch. Strunk,
and A. K. H¨uttel, Nanotechnology 27, 135202 (2016).
[15] S. Blien, K. J. G. G¨otz, P. L. Stiller, T. Mayer, T. Huber,
O. Vavra, and A. K. H¨uttel, “Towards carbon nano-
tube growth into superconducting microwave resonator
geometries,” phys. stat. sol. (b) 253, 2385 (2016).
[16] Chung Chiang Wu, Chang Hua Liu, and Zhaohui Zhong,
“One-step direct transfer of pristine single-walled carbon
nanotubes for functional nanoelectronics,” Nano Letters
10, 1032–1036 (2010).
[17] Fei Pei, Edward A. Laird, Gary A. Steele, and Leo P.
Kouwenhoven, “Valley-spin blockade and spin resonance
in carbon nanotubes,” Nature Nanotechnology 7, 630–
634 (2012).
[18] V. Ranjan, G. Puebla-Hellmann, M. Jung, T. Hasler,
A. Nunnenkamp, M. Muoth, C. Hierold, A. Wallraff, and
C. Sch¨onenberger, “Clean carbon nanotubes coupled to
superconducting impedance-matching circuits,” Nature
Communications 6, 7165 (2015).
[19] J. Waissman, M. Honig, S. Pecker, A. Benyamini,
A. Hamo, and S. Ilani, “Realization of pristine and lo-
cally tunable one-dimensional electron systems in carbon
nanotubes,” Nature Nanotechnology 8, 569 (2013).
[20] J¨org Gramich, Andreas Baumgartner, Matthias Muoth,
Christofer Hierold, and Christian Sch¨onenberger, “Fork
stamping of pristine carbon nanotubes onto ferromag-
netic contacts for spin-valve devices,” physica status so-
lidi (b) 252, 2496–2502 (2015).
[21] M. M. Desjardins, J. J. Viennot, M. C. Dartiailh, L. E.
Bruhat, M. R. Delbecq, M. Lee, M.-S. Choi, A. Cottet,
and T. Kontos, “Observation of the frozen charge of a
Kondo resonance,” Nature 545, 4 (2017).
[22] N. Paradiso et al., (2018), in preparation.
[23] Mukul Kumar and Yoshinori Ando, “Chemical vapor de-
position of carbon nanotubes: a review on growth mech-
anism and mass production,” Journal of Nanoscience and
Nanotechnology 10, 3739–3758 (2010).
[24] Dongning Yuan, Lei Ding, Haibin Chu, Yiyu Feng,
Thomas P. McNicholas, and Jie Liu, “Horizontally
aligned single-walled carbon nanotube on quartz from a
large variety of metal catalysts,” Nano Letters 8, 2576–
2579 (2008).
[25] Y. A. Kasumov, A. Shailos, I. I. Khodos, V. T. Volkov,
V. I. Levashov, V. N. Matveev, S. Gu´eron, M. Kobylko,
M. Kociak, H. Bouchiat, V. Agache, A. S. Rollier,
L. Buchaillot, A. M. Bonnot, and A. Y. Kasumov, “CVD
growth of carbon nanotubes at very low pressure of acety-
lene,” Applied Physics A 88, 687–691 (2007).
[26] Jacques Lefebvre, David G. Austing, Jeffery Bond, and
Paul Finnie, “Photoluminescence imaging of suspended
single-walled carbon nanotubes,” Nano Letters 6, 1603–
1608 (2006).
[27] Andres Castellanos-Gomez, Michele Buscema, Rianda
Molenaar, Vibhor Singh, Laurens Janssen, Herre S J
van der Zant, and Gary A Steele, “Deterministic trans-
fer of two-dimensional materials by all-dry viscoelastic
stamping,” 2D Materials 1, 011002 (2014).
[28] Ze-Liang Xiang, Sahel Ashhab, J. Q. You, and Franco
Nori, “Hybrid quantum circuits: Superconducting cir-
cuits interacting with other quantum systems,” Rev.
Mod. Phys. 85, 623–653 (2013).
[29] Markus Aspelmeyer, Tobias J. Kippenberg, and Florian
Marquardt, “Cavity optomechanics,” Rev. Mod. Phys.
86, 1391–1452 (2014).
[30] Xiu Gu, Anton Frisk Kockum, Adam Miranowicz, Yu-Xi
Liu, and Franco Nori, “Microwave photonics with super-
conducting quantum circuits,” Physics Reports 718-719,
1 – 102 (2017).
[31] Xin Wang, Adam Miranowicz, Hong-Rong Li, and
Franco Nori, “Hybrid quantum device with a carbon
nanotube and a flux qubit for dissipative quantum en-
gineering,” Phys. Rev. B 95, 205415 (2017).
[32] Andr´as P´alyi, P. R. Struck, Mark Rudner, Karsten Flens-
berg, and Guido Burkard, “Spin-orbit-induced strong
coupling of a single spin to a nanomechanical resonator,”
Phys. Rev. Lett. 108, 206811 (2012).
[33] Philipp R. Struck, Heng Wang, and Guido Burkard,
“Nanomechanical readout of a single spin,” Phys. Rev.
B 89, 045404 (2014).
[34] P. Stadler, W. Belzig, and G. Rastelli, “Control of vi-
brational states by spin-polarized transport in a carbon
nanotube resonator,” Phys. Rev. B 91, 085432 (2015).
[35] Peng-Bo Li, Ze-Liang Xiang, Peter Rabl, and Franco
Nori, “Hybrid quantum device with nitrogen-vacancy
centers in diamond coupled to carbon nanotubes,” Phys.
Rev. Lett. 117, 015502 (2016).
[36] S. Reinhardt, C. Butschkow, S. Geissler, A. Dirnaich-
ner, F. Olbrich, C. Lane, D. Schr¨oer, and A. K. H¨uttel,
“Lab::Measurement — a portable and extensible frame-
work for controlling lab equipment and conducting mea-
surements,” arXiv preprint (2018), arXiv:1804.03321.