5
stiftung des deutschen Volkes. We thank J. von Delft,
J. Kern, A. Donarini, M. Marga´nska, and M. Grifoni for
insightful discussions.
∗
andreas.huettel@ur.de
[1] Jun Kondo, “Resistance minimum in dilute magnetic al-
loys,” Prog. Theo. Phys. 32, 37–49 (1964).
[2] C. W. J. Beenakker, “Theory of coulomb-blockade oscil-
lations in the conductance of a quantum dot,” Phys. Rev.
B 44, 1646 (1991).
[3] D. Goldhaber-Gordon, J. G¨ores, M. A. Kastner,
H. Shtrikman, D. Mahalu, and U. Meirav, “From the
Kondo regime to the mixed-valence regime in a single-
electron transistor,” Phys. Rev. Lett. 81, 5225 (1998).
[4] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, David
Abusch-Magder, U. Meirav, and M. A. Kastner, “Kondo
effect in a single-electron transistor,” Nature 391, 156–
159 (1998).
[5] S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwen-
hoven, “A tunable Kondo effect in quantum dots,” Sci-
ence 281, 540–544 (1998).
[6] U. Gerland, J. von Delft, T. A. Costi, and Y. Oreg,
“Transmission phase shift of a quantum dot with Kondo
correlations,” Phys. Rev. Lett. 84, 3710–3713 (2000).
[7] D. Sprinzak, Y. Ji, M. Heiblum, D. Mahalu, and
H. Shtrikman, “Charge distribution in a Kondo-
correlated quantum dot,” Phys. Rev. Lett. 88, 176805
(2002).
[8] M. M. Desjardins, J. J. Viennot, M. C. Dartiailh, L. E.
Bruhat, M. R. Delbecq, M. Lee, M.-S. Choi, A. Cottet,
and T. Kontos, “Observation of the frozen charge of a
Kondo resonance,” Nature 545, 4 (2017).
[9] J. Cao, Q. Wang, and H. Dai, “Electron transport in very
clean, as-grown suspended carbon nanotubes,” Nature
Materials 4, 745–749 (2005).
[10] E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-
Rasmussen, J. Nyg˚ard, K. Flensberg, and L. P. Kouwen-
hoven, “Quantum transport in carbon nanotubes,” Rev.
Mod. Phys. 87, 703–764 (2015).
[11] V. V. Deshpande and M. Bockrath, “The one-
dimensional Wigner crystal in carbon nanotubes,” Na-
ture Physics 4, 314–318 (2008).
[12] F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen,
“Coupling of spin and orbital motion of electrons in car-
bon nanotubes,” Nature 452, 448–452 (2008).
[13] S. Pecker, F. Kuemmeth, A. Secchi, M. Rontani, D. C.
Ralph, P.L. McEuen, and S. Ilani, “Observation and
spectroscopy of a two-electron Wigner molecule in an ul-
traclean carbon nanotube,” Nat. Phys. 9, 576 (2013).
[14] M. Marganska, D. R. Schmid, P. L. Stiller, A. Dirnaich-
ner, Ch. Strunk, M. Grifoni, and A. K. H¨uttel, “Shaping
electron wave functions in a carbon nanotube with a par-
allel magnetic field,” (2017), arXiv:1712.08545.
[15] W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner,
M. Tinkham, and H. Park, “Fabry-P´erot interference
in a nanotube electron waveguide,” Nature 411, 665–669
(2001).
[16] A. Dirnaichner, M. del Valle, K. J. G. G¨otz, F. J. Schupp,
N. Paradiso, M. Grifoni, Ch. Strunk, and A. K. H¨uttel,
“Secondary electron interference from trigonal warping in
clean carbon nanotubes,” Physical Review Letters 117,
166804 (2016).
[17] J. Nyg˚ard, H. C. Cobden, and P. E. Lindelof, “Kondo
physics in carbon nanotubes,” Nature 408, 342 (2000).
[18] P. Jarillo-Herrero, J. Kong, H. S. J. van der Zant,
C. Dekker, L. P. Kouwenhoven, and S. De Franceschi,
“Orbital Kondo effect in carbon nanotubes,” Nature 434,
484–488 (2005).
[19] A. Makarovski, J. Liu, and G. Finkelstein, “Evolution
of transport regimes in carbon nanotube quantum dots,”
Phys. Rev. Lett. 99, 066801 (2007).
[20] D. R. Schmid, S. Smirnov, M. Marga´nska, A. Dirnaich-
ner, P. L. Stiller, M. Grifoni, A. K. H¨uttel, and Ch.
Strunk, “Broken SU(4) symmetry in a Kondo-correlated
carbon nanotube,” Physical Review B 91, 155435 (2015).
[21] M. Niklas, S. Smirnov, D. Mantelli, M. Marganska, N.-V.
Nguyen, W. Wernsdorfer, J.-P. Cleuziou, and M. Grifoni,
“Blocking transport resonances via Kondo many-body
entanglement in quantum dots,” Nat. Commun. 7, 12442
(2016).
[22] A. K. H¨uttel, G. A. Steele, B. Witkamp, M. Poot, L. P.
Kouwenhoven, and H. S. J. van der Zant, “Carbon
nanotubes as ultra-high quality factor mechanical res-
onators,” Nano Letters 9, 2547–2552 (2009).
[23] A. K. H¨uttel, H. B. Meerwaldt, G. A. Steele, M. Poot,
B. Witkamp, L. P. Kouwenhoven, and H. S. J. van der
Zant, “Single electron tunneling through high-Q single-
wall carbon nanotube NEMS resonators,” phys. stat. sol.
(b) 247, 2974 (2010).
[24] J. Moser, A. Eichler, J. G¨uttinger, M. I. Dykman,
and A. Bachtold, “Nanotube mechanical resonators with
quality factors of up to 5 million,” Nature Nanotechnol-
ogy 9, 1007–1011 (2014).
[25] G. A. Steele, A. K. H¨uttel, B. Witkamp, M. Poot, H. B.
Meerwaldt, L. P. Kouwenhoven, and H. S. J. van der
Zant, “Strong coupling between single-electron tunneling
and nanomechanical motion,” Science 325, 1103 (2009).
[26] B. Lassagne, Y. Tarakanov, J. Kinaret, D. Garcia-
Sanchez, and Bachtold A, “Coupling mechanics to
charge transport in carbon nanotube mechanical res-
onators,” Science 28, 1107 (2009).
[27] D. R. Schmid, P. L. Stiller, Ch. Strunk, and A. K.
H¨uttel, “Magnetic damping of a carbon nanotube nano-
electromechanical resonator,” New Journal of Physics 14,
083024 (2012).
[28] H. B. Meerwaldt, G. Labadze, B. H. Schneider,
A. Taspinar, Y. M. Blanter, H. S. J. van der Zant, and
G. A. Steele, “Probing the charge of a quantum dot with
a nanomechanical resonator,” Phys. Rev. B 86, 115454
(2012).
[29] M. N. Kiselev, K. A. Kikoin, L. Y. Gorelik, and R. I.
Shekhter, “Kondo force in shuttling devices: Dynamical
probe for a Kondo cloud,” Phys. Rev. Lett. 110, 066804
(2013).
[30] N. S. Wingreen and Y. Meir, “Anderson model out
of equilibrium: Noncrossing-approximation approach to
transport through a quantum dot,” Phys. Rev. B 49,
11040–11052 (1994).
[31] See Supplemental Material [url], which includes Refs. [6,
14, 16, 25, 28, 32, 45, 46].
[32] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and
H. Dai, “Synthesis of individual single-walled carbon nan-
otubes on patterned silicon wafers,” Nature 395, 878
(1998).