8
quality factors of up to 5 million,” Nature Nanotechnol-
ogy 9, 1007–1011 (2014).
[14] M. R. Delbecq, V. Schmitt, F. D. Parmentier, N. Roch,
J. J. Viennot, G. F`eve, B. Huard, C. Mora, A. Cottet,
and T. Kontos, “Coupling a Quantum Dot, Fermionic
Leads, and a Microwave Cavity on a Chip,” Phys. Rev.
Lett. 107, 256804 (2011).
[15] J. J. Viennot, M. R. Delbecq, M. C. Dartiailh, A. Cottet,
and T. Kontos, “Out-of-equilibrium charge dynamics in
a hybrid circuit quantum electrodynamics architecture,”
Phys. Rev. B 89, 165404 (2014).
[16] V. Ranjan, G. Puebla-Hellmann, M. Jung, T. Hasler,
A. Nunnenkamp, M. Muoth, C. Hierold, A. Wallraff, and
C. Schonenberger, “Clean carbon nanotubes coupled to
superconducting impedance-matching circuits,” Nature
Communications 6, 7165 (2015).
[17] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and
H. Dai, “Synthesis of individual single-walled carbon nan-
otubes on patterned silicon wafers,” Nature 395, 878
(1998).
[18] C. C. Wu, C. H. Liu, and Z. Zhong, “One-Step Direct
Transfer of Pristine Single-Walled Carbon Nanotubes
for Functional Nanoelectronics,” Nano Letters 10, 1032–
1036 (2010).
[19] F. Pei, E. A. Laird, G. A. Steele, and L. P. Kouwenhoven,
“Valley-spin blockade and spin resonance in carbon nan-
otubes,” Nature Nanotechnology 7, 630–634 (2012).
[20] L. R. Testardi, J. J. Hauser, and M. H. Read, “Enhanced
Superconducting T
c
and structural transformation in Mo-
Re Alloys,” Solid State Communications 9, 1829–1831
(1971).
[21] J. R. Gavaler, M. A. Janocko, and C. K. Jones, “A-15
structure Mo-Re superconductor,” Applied Physics Let-
ters 21, 179–180 (1972).
[22] V. S. Postnikov, V. V. Postnikov, and V. S. Zheleznyi,
“Superconductivity in Mo-Re System Alloy Films Pro-
duced by Electron Beam Evaporation in High Vacuum,”
Physica Status Solidi A 39, 21–23 (1977).
[23] B. H. Schneider, S. Etaki, H. S. J. van der Zant, and
G. A. Steele, “Coupling carbon nanotube mechanics to
a superconducting circuit,” Scientific Reports 2, 599
(2012).
[24] P. L. Stiller, S. Kugler, D. R. Schmid, C. Strunk, and
A. K. H¨uttel, “Negative frequency tuning of a carbon
nanotube nano-electromechanical resonator under ten-
sion,” physica status solidi (b) 250, 2518–2522 (2013).
[25] J. Talvacchio, M. A. Janocko, and J. Greggi, “Proper-
ties of Evaporated Mo-Re Thin-Film Superconductors,”
Journal of Low Temperature Physics 64, 395–408 (1986).
[26] V. A. Seleznev, M. A. Tarkhov, B. M. Voronov, I. I.
Milostnaya, V. Y. Lyakhno, A. S. Garbuz, M. Y.
Mikhailov, O. M. Zhigalina, and G. N. Gol’tsman, “De-
position and characterization of few-nanometers-thick su-
perconducting Mo-Re films,” Supercond. Sci. Technol.
21, 115006 (2008).
[27] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D.
Bomben, Handbook of X-ray Photoelectron Spectroscopy,
2nd ed. (Perkin-Elmer Corporation, Physical Electronics
Division, 1992).
[28] D. O. Scanlon, G. W. Watson, D. J. Payne, G. R. Atkin-
son, R. G. Egdell, and D. S. L. Law, “Theoretical and
experimental study of the electronic structures of MoO
3
and MoO
2
,” The Journal of Physical Chemistry C 114,
4636–4645 (2010).
[29] N. Wiberg, E. Wiberg, and A. F. Hollemann, Lehrbuch
der anorganischen Chemie, 101st ed. (Gruyter, 1995).
[30] H. St¨ocker and C. Hartnack, Taschenbuch der Physik, 5th
ed. (Verlag Harri Deutsch, 2007).
[31] N. Morton, B. W. James, G. H. Wostenholm, D. G. Pom-
fret, M. R. Davies, and J. L. Dykins, “Superconductivity
of molybdenum and tungsten carbides,” Journal of the
Less Common Metals 25, 97–106 (1971).
[32] M. Aziz, D. C. Hudson, and S. Russo, “Molybdenum-
rhenium superconducting suspended nanostructures,”
Applied Physics Letters 104, 233102 (2014).
[33] M. Tinkham and G. McKay, Introduction to Supercon-
ductivity, 2nd ed. (McGraw-Hill, Inc., 1996).
[34] V. Singh, B. H. Schneider, S. J. Bosman, E. P. J. Merkx,
and G. A. Steele, “Molybdenum-rhenium alloy based
high-Q superconducting mircowave resonators,” Applied
Physics Letters 105, 222601 (2014).
[35] Caltech CITCRYO1-12A cryogenic microwave amplifier,
http://www.caltechmicrowave.org/.
[36] M. S. Khalil, M. J. A. Stoutimore, F. C. Wellstood, and
K. D. Osborn, “An analysis method for asymmetric res-
onator transmission applied to superconducting devices,”
Journal of Applied Physics 111, 054510 (2012).
[37] D. C. Mattis and J. Bardeen, “Theory of the anomalous
skin effect in normal and superconducting metals,” Phys.
Rev. 111, 412–417 (1958).
[38] J. Gao, J. Zmuidzinas, A. Vayonakis, P. Day, B. Mazin,
and H. Leduc, “Equivalence of the Effects on the Com-
plex Conductivity of Superconductor due to Temperature
Change and External Pair Breaking,” Journal of Low
Temperature Physics 151, 557–563 (2008).
[39] R. E. Collin, Foundations for Microwave Engineering,
2nd ed. (IEEE Press).
[40] W. A. Phillips, “Two-level states in glasses,” Reports on
Progress in Physics 50, 1657 (1987).
[41] A. Bruno, G. de Lange, S. Asaad, K. L. van der Enden,
N. K. Langford, and L. DiCarlo, “Reducing intrinsic
loss in superconducting resonators by surface treatment
and deep etching of silicon substrates,” Applied Physics
Letters 106, 182601 (2015).
[42] D. P. Pappas, M. R. Vissers, D. S. Wisbey, J. S. Kline,
and J. Gao, “Two level system loss in superconducting
microwave resonators,” IEEE Transactions on Applied
Superconductivity 21, 871–874 (2011).
[43] J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas,
B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc,
“Experimental evidence for a surface distribution of two-
level systems in superconducting lithographed microwave
resonators,” Applied Physics Letters 92, 152505 (2008).