# Magnetic damping of a CNT resonator



D. R. Schmid, P. L. Stiller, S. Kugler, H. Kraus, Ch. Strunk, and A. K. Hüttel



Institute for Experimental and Applied Physics, University of Regensburg, 93040 Regensburg, Germany

## Ultraclean carbon nanotubes



- first preparation of contacts, trenches, catalyst ...
- then grow nanotubes across contacts
- no lithography or wet chemistry afterwards!
- → no chemical or mechanical damage
- → no resist residues, no e-beam irradiation
- → chip structures must survive the chemical vapor deposition (CVD) nanotube growth

#### **Electronic characterization**

- $T \le 300\,\mathrm{mK} \Rightarrow$  highly transparent contacts
- Fabry-Perot regime for hole conduction
- Coulomb blockade (CB) with Kondo features for electron conduction
- clean few-electron system [1, 2, 3]



## **Nanotube NEMS resonators**

- drive the carbon nanotube as resonator contactfree with RF signal from nearby antenna
- $\rightarrow$  high-Q resonator at low T possible [6, 7, 8]



- clear mechanical resonance features
- visible down to band gap  $N_{\rm el}=N_{\rm h}=0$
- backgate voltage builds up mechanical tension
- two "fundamental frequencies" 

  → neighboring nanotube segments 600 nm, 700 nm
- approximation: tension  $\mathscr{T}=0\longrightarrow f_0\propto L^{-2}$

$$\frac{253\,\text{MHz}}{182\,\text{MHz}} = \left(\frac{594\,\text{nm}}{700\,\text{nm}}\right)^{-2}$$

- detection mechanism of second segment?
- 2f features: parametric resonance [9]?

# Transport spectrum at $N_{\rm el} \approx 40$

- $T = 25 \,\mathrm{mK} \Rightarrow$  four-fold shell filling, Kondo effect
- superconductivity in the leads: energy gap
- mechanical self-driving of the CNT resonator without external RF signal [4, 5], see arrows



# Suppression of self-driving

• feedback effects suppressed by magnetic field



- line plot, comparison with theory [5]: magnetic field  $\rightarrow$  "as if there were no feedback"
- requirements for self-driving, neg. damping:
- -large electronic tunnel rate  $\Gamma \gg 2\pi f$
- -high Q factor
- tunnel rates do not change in this field range
- magnetically induced damping?

# Consistency: All damped in LHe

• in <sup>3</sup>He/<sup>4</sup>He mixture instead of vacuum: no mechanical instability even at much higher bias



### Mechanical charge detection



## Magnetic damping [10]

- partial shortcut via parasitic capacitance (large) and resistance
- electromechanical damping: eddy current, Ohmic dissipation



• limitation of the observable Q factor as

$$Q_{\rm m}(B)=rac{q}{B^2}$$
 with  $q=2\pi frac{Rm}{2\sqrt{2}L^2}$ 

- ullet quality factor  $Q_0$  for zero external field
- resulting expected magnetic field dependence:

$$Q(B) = rac{Q_0 Q_{\mathsf{m}}(B)}{Q_0 + Q_{\mathsf{m}}(B)}$$



- use double-frequency resonance and amplitudemodulated driving for better signal/noise ratio
- multi-peak signal visible
- at resonance, system response is delayed with respect to amplitude modulation
- $\Delta t \approx 0.3\,\mathrm{ms}$  is consistent with mechanical energy storage,  $Q \approx 10^5$
- use induced out-of-phase signal for fitting
- peak broadening in magnetic field observed, agrees very well with damping model

# Postdoc position!





#### References

- [1] J. Cao et al., Nature Materials 4, 745 (2005).
- [2] V. V. Deshpande *et al.*, Science **323**, 106 (2009).
- [3] G. A. Steele *et al.*, Nature Nanotech. **4**, 363 (2009).
- [4] G. Steele, A. Hüttel *et al.*, Science **325**, 1103 (2009).
- [5] O. Usmani *et al.*, Phys. Rev. B **75**, 195312 (2007).
- [6] A. K. Hüttel *et al.*, Nano Letters **9**, 2547 (2009).[7] A. K. Hüttel *et al.*, pss(b) **247**, 2974 (2010).
- [8] E. A. Laird *et al.*, Nano Letters **12**, 193 (2012).
- [9] A. Eichler et al., Nano Letters 11, 2699 (2011).
- [10] D. R. Schmid *et al.*, New J. Phys. **14**, 083024 (2012).