6 S. Blien et al.: Nanotube growth into superconducting microwave resonators
ter targets display significantly higher quality factors [35].
Given our excellent results using niobium, we can exclude
problems with substrate, lithography, and detection cir-
cuitry. Further work shall thus target additional optimiza-
tion of the metal thin films regarding both nominal compo-
sition and detailed deposition parameters.
Acknowledgements We thank T. N. G. Meier and M.
Kronseder for experimental help with XPS spectroscopy of the
metal films. The authors gratefully acknowledge funding by the
Deutsche Forschungsgemeinschaft via SFB 631, SFB 689, GRK
1570, and Emmy Noether project Hu 1808/1.
References
[1] Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod.
Phys. 85, 623–653 (2013).
[2] T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin,
and A. Wallraff, Phys. Rev. Lett. 108, 046807 (2012).
[3] J. Basset, D. D. Jarausch, A. Stockklauser, T. Frey, C. Re-
ichl, W. Wegscheider, T. M. Ihn, K. Ensslin, and A. Wall-
raff, Phys. Rev. B 88, 125312 (2013).
[4] K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung,
J. M. Taylor, A. A. Houck, and J. R. Petta, Nature 490, 380
(2012).
[5] J. J. Viennot, M. R. Delbecq, M. C. Dartiailh, A. Cottet, and
T. Kontos, Phys. Rev. B 89, 165404 (2014).
[6] V. Ranjan, G. Puebla-Hellmann, M. Jung, T. Hasler,
A. Nunnenkamp, M. Muoth, C. Hierold, A. Wallraff,
and C. Sch
¨
onenberger, Nature Communications 6, 7165
(2015).
[7] T. Hasler, M. Jung, V. Ranjan, G. Puebla-Hellmann,
A. Wallraff, and C. Sch
¨
onenberger, Phys. Rev. Applied
4(Nov), 054002 (2015).
[8] J. J. Viennot, M. C. Dartiailh, A. Cottet, and T. Kontos, Sci-
ence 349(6246), 408–411 (2015).
[9] J. Cao, Q. Wang, and H. Dai, Nature Materials 4(10), 745–
749 (2005).
[10] F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen, Na-
ture 452(7186), 448–452 (2008).
[11] G. A. Steele, G. G
¨
otz, and L. P. Kouwenhoven, Nature
Nanotechnology 4(6), 363–367 (2009).
[12] D. R. Schmid, S. Smirnov, M. Marga
´
nska, A. Dirnaichner,
P. L. Stiller, M. Grifoni, A. K. H
¨
uttel, and C. Strunk, Phys-
ical Review B 91, 155435 (2015).
[13] E. A. Laird, F. Kuemmeth, G. A. Steele, K. Grove-
Rasmussen, J. Nyg
˚
ard, K. Flensberg, and L. P. Kouwen-
hoven, Rev. Mod. Phys. 87, 703–764 (2015).
[14] A. Dirnaichner, M. del Valle, K. J. G. G
¨
otz, F. J. Schupp,
N. Paradiso, M. Grifoni, A. K. H
¨
uttel, and C. Strunk, sub-
mitted for publication (2016), arXiv:1602.03866.
[15] A. K. H
¨
uttel, G. A. Steele, B. Witkamp, M. Poot, L. P.
Kouwenhoven, and H. S. J. van der Zant, Nano Letters 9(7),
2547–2552 (2009).
[16] J. Moser, A. Eichler, J. G
¨
uttinger, M. I. Dykman, and
A. Bachtold, Nature Nanotechnology 9(12), 1007–1011
(2014).
[17] G. A. Steele, A. K. H
¨
uttel, B. Witkamp, M. Poot, H. B.
Meerwaldt, L. P. Kouwenhoven, and H. S. J. van der Zant,
Science 325(5944), 1103–1107 (2009).
[18] D. R. Schmid, P. L. Stiller, C. Strunk, and A. K. H
¨
uttel,
New Journal of Physics 14(8), 083024 (2012).
[19] D. R. Schmid, P. L. Stiller, C. Strunk, and A. K. H
¨
uttel,
Appl. Phys. Lett. 107(12), 123110 (2015).
[20] A. Benyamini, A. Hamo, S. V. Kusminskiy, F. von Oppen,
and S. Ilani, Nature 10, 151–156 (2014).
[21] C. C. Wu, C. H. Liu, and Z. Zhong, Nano Letters 10(3),
1032–1036 (2010).
[22] F. Pei, E. A. Laird, G. A. Steele, and L. P. Kouwenhoven,
Nature Nanotechnology 7(10), 630–634 (2012).
[23] J. Waissman, M. Honig, S. Pecker, A. Benyamini,
A. Hamo, and S. Ilani, Nature Nanotechnology 8, 569–574
(2013).
[24] J. Gramich, A. Baumgartner, M. Muoth, C. Hierold, and
C. Sch
¨
onenberger, physica status solidi (b) 252(11), 2496–
2502 (2015).
[25] K. J. G. G
¨
otz, S. Blien, P. L. Stiller, O. Vavra, T. Mayer,
T. Huber, T. N. G. Meier, M. Kronseder, C. Strunk, and
A. K. H
¨
uttel, Nanotechnology 27, 135202 (2016).
[26] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and H. Dai,
Nature 395(6705), 878 (1998).
[27] Caltech CITCRYO1-12A cryogenic microwave amplifier,
http://www.caltechmicrowave.org/.
[28] M. S. Khalil, M. J. A. Stoutimore, F. C. Wellstood, and
K. D. Osborn, Journal of Applied Physics 111(5), 054510
(2012).
[29] A. Bruno, G. de Lange, S. Asaad, K. L. van der Enden,
N. K. Langford, and L. DiCarlo, Appl. Phys. Lett. 106(18),
182601 (2015).
[30] M. R. Delbecq, V. Schmitt, F. D. Parmentier, N. Roch,
J. J. Viennot, G. F
`
eve, B. Huard, C. Mora, A. Cottet, and
T. Kontos, Phys. Rev. Lett. 107(Dec), 256804 (2011).
[31] L. R. Testardi, J. J. Hauser, and M. H. Read, Solid State
Communications 9, 1829–1831 (1971).
[32] J. R. Gavaler, M. A. Janocko, and C. K. Jones, Applied
Physics Letters 21(4), 179–180 (1972).
[33] V. S. Postnikov, V. V. Postnikov, and V. S. Zheleznyi, Phys-
ica Status Solidi A 39, 21–23 (1977).
[34] B. H. Schneider, S. Etaki, H. S. J. van der Zant, and G. A.
Steele, Scientific Reports 2, 599 (2012).
[35] V. Singh, B. H. Schneider, S. J. Bosman, E. P. J. Merkx, and
G. A. Steele, Applied Physics Letters 105, 222601 (2014).
[36] M. Aziz, D. C. Hudson, and S. Russo, Applied Physics Let-
ters 104, 233102 (2014).
[37] D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412–417
(1958).
[38] J. Gao, J. Zmuidzinas, A. Vayonakis, P. Day, B. Mazin,
and H. Leduc, Journal of Low Temperature Physics 151,
557–563 (2008).
[39] M.
ˇ
Zemli
ˇ
cka, P. Neilinger, M. Trgala, M. Reh
´
ak,
D. Manca, M. Grajcar, P. Szab
´
o, P. Samuely, i. c. v. Ga
ˇ
zi,
U. H
¨
ubner, V. M. Vinokur, and E. Il’ichev, Phys. Rev. B
92, 224506 (2015).
[40] E. Chen and S. Y. Chou, IEEE Transactions on Microwave
Theory and Techniques 45, 939–945 (1997).